ব্যতিচার দুই ধরনের। যথা— (ক) গঠনমূলক ব্যতিচার এবং (খ) ধ্বংসাত্মক ব্যতিচার
(ক) গঠনমূলক ব্যতিচার (Constructive interference) সমান বিস্তার ও কম্পাঙ্কের দুটি শব্দতরঙ্গ উপরিপাতনের ফলে যে স্থানে একই দশায় মিলিত হয়, সেখানে লঘি সরণ শব্দের প্রত্যেকটি তরঙ্গের সরণের যোগফলের সমান হয়। এক্ষেত্রে y1 = y2 হলে, লব্ধি সরণ দ্বিগুণ হয়। ফলে লব্ধি সরণের তীব্রতা সবচেয়ে বেশি হয়। এ ব্যতিচারকে গঠনমূলক ব্যতিচার বলে। [চিত্র ১৭-১৩(ক)]
(খ) ধ্বংসাত্মক ব্যতিচার (Destructive interference) : সমান বিস্তার ও কম্পাঙ্কের দুটি শব্দতরঙ্গ উপরিপাতনের ফলে যে স্থানে বিপরীত দশায় মিলিত হয়, সেখানে লব্ধি সরণ শূন্য হওয়ায় কোন শব্দ শোনা যায় না। একে শব্দের ধ্বংসাত্মক ব্যতিচার বলে [চিত্র ১৭.১৩(খ)]। লব্ধি সরণ মোটা সরলরেখা দ্বারা দেখান হয়েছে।
দুটি উৎসকে সুসংগত করতে হলে উভয়কে একই উৎস হতে সৃষ্টি করতে হয়।
ধরা যাক সমান বিস্তার ও কম্পাঙ্কের দুটি শব্দ তরঙ্গ একই রেখায় সঞ্চালিত হয়ে এক বিন্দুতে মিলিত হল। t সময় পরে যে কোন বিন্দুতে এদের সরণ যথাক্রমে Y1 এবং Y2 হলে আমরা পাই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>y</mi><mn>1</mn></msub><mo>=</mo><msub><mi>A</mi><mn>0</mn></msub><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mo>(</mo><mn>2</mn><mi>π</mi><mi>n</mi><mi>t</mi><mo>−</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mi>λ</mi></mfrac><msub><mi>x</mi><mn>1</mn></msub><mo>)</mo></math>
ও <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>y</mi><mn>2</mn></msub><mo>=</mo><msub><mi>A</mi><mn>0</mn></msub><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><mrow><mn>2</mn><mi>π</mi><mi>n</mi><mi>t</mi><mo>−</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mi>λ</mi></mfrac><msub><mi>x</mi><mn>2</mn></msub></mrow><mo>)</mo></mrow></math>
এখানে n = সুরশলাকার কম্পাঙ্ক, = মাধ্যমে শব্দের তরঙ্গ দৈর্ঘ্য ও A0 = তরঙ্গের বিস্তার।
এ স্থলে প্রথম তরঙ্গ আলোচ্য বিন্দুতে যেতে x1 পথ ও দ্বিতীয় তরঙ্গ ঐ বিন্দুতে যেতে x2 পথ অতিক্রম করে। এখন তরঙ্গদ্বয়ের উপরিপাতের ফলে এদের লব্ধি সরণ Y হলে,
এখানে, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>2</mn><msub><mi>A</mi><mn>0</mn></msub><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><mrow><mo>(</mo><mfrac><mrow><msub><mi>x</mi><mn>2</mn></msub><mo>−</mo><msub><mi>x</mi><mn>1</mn></msub></mrow><mi>λ</mi></mfrac><mo>)</mo></mrow></math> হল লব্ধি বিস্তার।
সমীকরণ (25) একটি নতুন তরঙ্গের সমীকরণ। সুতরাং, দেখা যাচ্ছে যে দুটি তরঙ্গের উপরিপাতের ফলে একটি নতুন তরঙ্গ সৃষ্টি হয়।
দুটি তরঙ্গের উপরিপাতনের ফলে উৎপন্ন তরঙ্গের বিস্তার A = 2 A0 cos π এবং এর মান মূল তরঙ্গদ্বয়ের পথ পার্থক্য (x2 – X1 )-এর উপর নির্ভর করে। গাণিতিকভাবে পাওয়া যায়, শব্দের তীব্রতা I তরঙ্গের বিস্তারের (A) বর্গের সমানুপাতিক।
অর্থাৎ,
বা,
উপরের গাণিতিক বিশ্লেষণ থেকে দেখা যায় যে, দুটি শব্দ তরঙ্গ নিম্নলিখিত শর্তগুলো পূরণ করলে ব্যতিচার হবে :
১। তরঙ্গ দুটির কম্পাঙ্ক ও বিস্তার সমান হতে হবে।
২। তরঙ্গ দুটির আকৃতি ও দশা অপরিবর্তিত থাকবে।
৩। তরঙ্গ দুটির দরুণ মাধ্যমের কোন একটি কণার সরণ একই রেখায় হবে।
৪। শব্দের উৎস হতে নিঃশব্দ বা ধ্বংসাত্মক ব্যতিচার বিন্দুতে তরঙ্গদ্বয়ের অতিক্রান্ত পথ পার্থক্য -এর অযুগ্ম গুণিতক হবে এবং জোরালো বা গঠনমূলক ব্যতিচারের ক্ষেত্রে তরঙ্গদ্বয়ের অতিক্রান্ত পথ-পার্থক্য শূন্য অথবা -এর যুগ্ম গুণিতক হবে।
বাস্তবে দুটি ভিন্ন উৎস দ্বারা ১৭.১৪-এ বর্ণিত শর্তগুলো পুরাপুরি পূর্ণ করে শব্দের ব্যতিচার দেখানো যায় না। এজন্য কুইঙ্ক (Quincke)-এর উদ্ভাবিত পরীক্ষা ব্যবস্থা দ্বারা একটি শব্দ তরঙ্গকে কোন একটি বিন্দু হতে দুটি ভিন্ন পথে প্রবাহিত হতে দিয়ে উপযুক্ত দশা বৈষম্যে পুনরায় অপর এক বিন্দুতে আপতিত করে শব্দের ব্যতিচার সৃষ্টি করা হয়। ১৭.১৪ নং চিত্রে পরীক্ষার প্রয়োজনীয় ব্যবস্থা দেখানো হয়েছে।
পরীক্ষায় দুটি U-আকৃতির দুই মুখ খোলা নল AB ও DEF নেয়া হয়। AB নলের দুই বাহুতে দুটি পার্শ্ব নল M ও N আছে। DEF নলের দুই বাহুর ভেতর AB নলের বাহু দুটি প্রবেশ করানো যায়।
একটি সুর-শলাকাকে শব্দায়িত করে M নলের মুখে ধরা হয়। এতে সুর-শলাকা হতে শব্দ তরঙ্গ AB ও DEF পথে প্রবাহিত হয়ে N নল দিয়ে বের হয়ে যাবার কালে P বিন্দুতে মিলিত হবে। ঐ দুই পথে প্রবহমান তরঙ্গের কম্পাঙ্ক, বিস্তার ও জাতি অভিন্ন থাকবে এবং তারা N নলে একই রেখায় সরণ সৃষ্টি করবে। এখন DEF নলটিকে বাইরের দিকে টেনে অথবা ভিতরের দিকে ঠেলে ABP ও AEP পথের দূরত্বের পার্থক্য বাড়ালে অথবা কমালে N নলের মুখে শব্দের তীব্রতার নিম্নলিখিত পরিবর্তনগুলো লক্ষ্য করা যাবে :
(ক) যখন ABP ও AEP-এর মধ্যে দৈর্ঘ্যের পার্থক্য অর্থাৎ তরঙ্গ দুটির অতিক্রান্ত পথের পার্থক্য তরঙ্গ দৈর্ঘ্যের অযুগ্ম গুণিতক হবে অর্থাৎ (AEP – ABP) = , 3(),5() ইত্যাদি হবে তখন তরঙ্গ দুটি P 'বিন্দুতে বিপরীত দশায় মিলিত হওয়ায় N নলের মুখে কোন শব্দ শোনা যাবে না। এটাই ধ্বাংসাত্মক ব্যতিচার ।
(খ) যখন AEP ও ABP পথের দৈর্ঘ্যের পার্থক্য শূন্য অথবা এর যুগ্ম গুণিতক হবে অর্থাৎ (AEP - ABP)= 0,2 (), 4 ( ) ইত্যাদি হবে, তখন তরঙ্গ দুটি P বিন্দুতে সমদশায় মিলিত হবে এবং N-এর মুখে জোরালো শব্দ শোনা যাবে। এটিই শব্দের গঠনমূলক ব্যতিচার ।
ব্যবহার : কুইক নলের সাহায্যে শব্দের বেগ নির্ণয় করা যায়। AEP ও ABP পথের দৈর্ঘ্যের ন্যূনতম পার্থক্য N নলের মুখে কোন শব্দ শোনা না গেলে আমরা পাই, AEP - ABP = λ/2 । এখন, সুর শলাকার কম্পাক n হলে,
V= nλ = 2n ()=2n (AEP - ABP)
কাজেই, λ জেনে নলের বায়ুতে শব্দের বেগ জানা যাবে।
আরও দেখুন...